May 2015

Deliverable T1.1_D1.1
Formal model for Ontologies

Project IMPEX

ANR-13-INSE-0001

IRIT, ENSEEIHT, Université de Toulouse
LABRI, Université de Bordeaux & CNRS
LORIA, Telecom Nancy, Université de Lorraine
LRI, CentraleSupelec

SAMOVAR, Telecom Sud Paris

Systerel, Aix-en-Provence

http://impex.loria.fr

16/12/2013-17/12/2017

IMPE X

Contents

1 Introduction 2
2 Design models and ontologies 3
2.1 Ontologies are good candidates for domain knowledge modeling . . . 3
2.1.1 Domain modeling: Ontologies 4
2.1.2 System Modeling: Design Models D

2.1.3 Domain Modeling: Ontologies versus System Modeling: De-
sign Models o 5
2.1.4 Ontology Models 6
2.1.5 Ontologies in Engineering 8
2.1.6 Ontologies and Annotations 8
2.1.7 Ontologies and Formal Models 9
3 Annotations to bridge ontologies and system design 10
3.1 What if the ontology and the design model were linked 7 10
3.2 Modeling languages 10
3.2.1 Ourapproach 11
3.2.2 Some Comments 12
3.2.3 Associated theory oL 13
3.3 An illustrating example oL 14
3.3.1 Design model for students registration 14
3.3.2 An ontology of diplomas 15
3.3.3 Link of ontology and design model 16
3.3.4 Modeling languageso 17
3.4 Model annotation: three cases 17
3.4.1 Annotation by inheritance using the Is_a relationship 17
3.4.2 Annotation by partial inheritance using the Case_of relationship 18
3.4.3 Annotation by association 18
3.4.4 Annotation of the casestudy 19
3.4.5 Annotation meta-modelso 20
3.5 Properties expression and verification 21
4 Conclusion and future work 22
4.1 Conclusion 22
4.2 Ongoing work 22

Chapter 1

Introduction

This report presents an overview of ontology models and the way they are set up
in engineering. The objective of the work presented in this report is to show how
knowledge domain models can help in the definition of high quality design models.

This report is organized as follows. Chapter 1 describes the main character-
istics of ontologies. Formal modeling aspects related to the ontology models are
overviewed. In chapter 2, we address the problem of design model annotations by
references to ontologies. Finally, chapter 3 outlines the next research directions to
be addressed in the IMPEX project.

Chapter 2

Design models and ontologies

This chapter describes the stepwise methodology we have defined in order to allow
model designers to handle explicitly domain knowledge. The proposed approach
consists in associating a domain ontology (concepts and associated constraints) to a
design model. This association, is performed thanks to a defined annotation mecha-
nism. The defined association mechanism entails a loosely coupling of the ontology
and of the annotated models. Indeed, no modification nor evolution of the design
models is required. Moreover, ontologies and models may evolve asynchronously.

2.1 Ontologies are good candidates for domain
knowledge modeling

As mentioned above, a lot of efforts have been devoted to the study of ontologies
and their applications in the area of semantic web and information retrieval. Several
approaches for describing, designing and formalizing ontologies for these applica-
tion domains have been proposed by many authors. Models [13, 8, 37, 28, 43, 40],
browsers like Protégé! [32, 1] or PlibEditor?, reasoners [6, 23, 24, 36], annotators
[17, 25] and XML-based translators [9, 45] have been developed to engineer such
ontologies and establish formal links with the studied domain objects like texts,
images, videos, signals, ... Most of these approaches paid a lot of attention to the
use of ontologies to interpret these objects and/or to provide classifications of these
interpreted objects.

In this section, we aim to to give our view of domain ontologies with a specific
focus on system engineering and model engineering. We study how ontologies can
be used to enrich design models by relevant domain properties and thus to increase
the expressivity of such design models. First at all we give our point of view on
domain models expressed by ontologies and design models.

thttp:/ /protege.stanford.edu/
2http:/ /www.plib.ensma.fr/

2.1.1 Domain modeling: Ontologies

Definition

Gruber defines an ontology as an explicit specification of a conceptualization [21].
Another definition relies on the notion of dictionary, where [31] considers a domain
ontology as a formal and consensual dictionnary of categories and properties of en-
tities of a domain and the relationships that hold among them. Here, an entity
represents any concept belonging to the considered domain. The term dictionary
entails two major concepts. First, it makes explicit the existence, through a con-
structive definition or declaration, of entities in the domain under consideration and
second that any entity or relationship described in this ontology is directly referen-
cable, for any purpose and from any context, independently of the other entities or
relationships. Reference is carried by a symbol defining an identifier. This identifica-
tion symbol may be either a language-independent identifier, or a language-specific
set of words. However, whatever this symbol is, and unlike in linguistic dictionary, it
directly denotes a domain entity or relationship. Each description of each entity or
relationship is formally stated using an ontology modeling language equipped with
a formal semantics. It allows automatic reasoning and consistency checking.

Some fundamental characteristics

A domain ontology is an explicit conceptualization of domain entities and relation-
ships. Ontology definitions will fulfil three fundamental criteria [31].

1. Formality. An ontology is a conceptualization with an underlying formal
semantics and equipped with reasoning capabilities. It is expressed within
a modeling language equipped with a satisfaction relationship (=) offering
interpretation capabilities (e.g. checking that an instance belongs to the model
defined by the ontology) and an entailment relationship (Fo) to handle proofs
(e.g. proving that a statement can be derived from axioms and theorems
defined by the ontology). As a consequence, checking properties expressed over
the ontology-defined concepts and individuals, becomes possible, thanks to the
associated theory, either by automatic or semi-automatic reasoning techniques.

2. Consensuality. Agreement on the conceptualization defined by an ontology
will be reached for a large community of users. This community is not re-
stricted to users or to developers of a specific application: it gathers all the
potential users and developers of other applications related to the conceptual-
ized domain. Consequently, an ontology will be shared by several applications
and design models. For example, ISO 13584-compliant (PLIB) [40, 43] product
ontologies are defined according to a formal standardization process. They are
published as ISO and/or IEC international standards. This criterion excludes
conceptual models defined for a specific application.

3. Capability to be referenced. As stated in the previous definition, each
concept defined in an ontology is associated to an identifier provided to allow

applications to refer this concept from any environment. Moreover, this con-
cept can be referenced whatever is the ontology model set up to describe this
concept.

2.1.2 System Modeling: Design Models

Design models address the definition of models of systems to be realized. They
are described within modeling languages and they correspond to abstractions of the
considered system. Semantics of the modeling language is given by a satisfaction
relationship (F=y/) checking if a model is satisfiable and an entailment relationship
(Far) defining a proof system where properties can be proved from axioms, theorems
and proof rules applications). Various analyses, properties checking, models manip-
ulations, etc. are performed on such models depending on the provided modeling
language, its semantics, its associated verification procedure and on the abstraction
level where models are defined. As a consequence, different models of a same sys-
tem may be produced along the design process. Thus, several heterogeneous models
expressed with different modeling languages are produced. That heterogeneity may
lead to ambiguities in the interpretation of the system characteristics and/or behav-
ior.

2.1.3 Domain Modeling: Ontologies versus System Model-
ing: Design Models

In [31], authors have proposed a comparison of ontologies and design models. Mod-
eling languages are required to express both ontologies and design models. These
modeling languages offer different verification techniques according to their seman-
tics. As such, both ontologies and design models are models. They define a con-
ceptualization of a part of the subject concerned by through models defined within
modeling languages. So, one may guess that from this point of view, ontologies
and design models are similar, since they share a common goal, namely modeling.
However, if we consider the three criteria identified above in section 2.1.1, we can
identify some significant differences.

Design models are equipped with formal semantics In this sense, they fit
the formality criterion. They are grounded on rigorously defined semantics and
associated to property verification systems which use reasoning and logical theo-
ries. However, according to [31], design models are closely related to the system
under design. In other words, a design model prescribes and enforces which sys-
tem characteristics will be available in the model to perform a specific analysis or
treatment. Indeed, as mentioned above, a single system may have different design
models (safety oriented model, real time model, energy consumption model and an
architectural model for example). From this observation, we can conclude that the
consensuality criterion is not (or partly) fulfilled by design models. Finally, if we
consider naming processes in design models and design modeling languages, there
is no rule requiring a single identification of entities (variables, constants, states,
events, etc.) manipulated by design models. A typical example of such a naming

rule relates to the description of point coordinates, where a pair of floats (vq,vs)
may be interpreted differently in a model referring to polar coordinates (r,6) and
in another model referring to cartesian coordinates (z,y). The entity identification
is unique in the context of the considered design model, but it may be used with a
different semantics in another model. So, the capability to be referenced criterion is
not fulfilled by design models.

Previously identified differences do not constitute a drawback. The simultaneous
use of both ontologies and design models in an engineering context, strengthens the
modeling processes.

The subject of this paper is not to oppose ontologies and design models. The
previously identified differences advocate for the use of both ontologies and design
models in a single framework. Ontologies carry relevant informations usually han-
dled implicitly in design models. When ontologies and design models are integrated
(or composed), domain properties may be explicitly used in the design models and
in the associated system development processes.

2.1.4 Ontology Models

Several ontology modeling languages were developed during last ten years, as for
example, Ontolingua [19] for artificial intelligence applications, DAML+OIL [13],
RDFS [8] and OWL [37, 28] for Web applications, and PLIB [43, 40] for engineering

applications.

Main Ontology Models Characteristics

In [18], authors have identified some relevant characteristics associated to ontology
modeling languages. These characteristics have been extended with new ones in
order to handle the system engineering aspects.

e Words and concepts. Ontology models offer the capability to describe
words and concepts. Various relationships are offered by these languages: be-
tween words, between concepts and between words and concepts. The presence
of such relationships leads to two ontologies design processes [31]: from words
to concepts (e.g. semantic web) or from concepts to words (e.g. engineering
catalogues).

e Strong typing. Ontology modeling languages are equipped with a type sys-
tem characterizing classes, properties, relationships and domain values. Ac-
cording to the modeling language, this type system may be more or less a
strong type system. For example, the PLIB ontology modeling language uses
a strong typing system (e.g. unit types are built-in types) while descrip-
tion logics do not require strong typing. Types are useful for indexation,
and thus for the definition of persistent frameworks like semantic databases
[10, 16, 38, 27, 39, 44] to sore both ontologies and their instances.

e Algebraic operators may be associated to the types available in the ontology
language. Operators on classes like union, intersection, etc. are available in

most of the ontology modeling languages. For example, operators on reals,
are available in the PLIB ontology model. They make it possible to express
property derivation (e.g. diameter equals two times a ray). These defined
algebraic operators define abstract data types and give complete definition of
the data types discussed above.

Constraints description constructs are offered by the ontology modeling
language to define constraints on classes, properties or on whole ontology.
In the engineering domain, the more the constraint description language is
rich, the more the expressed concepts of the ontologies are precisely described.
Checking these constraints depend on the used constraint solving techniques
associated to the ontology modeling language.

CWA v.s. OWA. Closed world assumption (CWA) implies that a complete
knowledge is known and, if a fact is not a consequence of the ontology model,
then its negation is, while in open world assumption (OWA) this reasoning
is no longer available. In general, CWA is used in system engineering, while
semantic web considers OWA.

Context modeling. In the engineering domain, the context in which a prop-
erty is defined is important [41]. At the ontology level, the domain of a context
dependent property is not only its class, but it is also a context description
(usually a class). For example, the definition of the lifetime (property) of a
tyre (class) depends on the average temperature of use (context of use). Note
that PLIB offers built-in constructs for such properties.

Inheritance and instanciation. Classes may be linked by single or multiple
inheritance relationships. Inheritance helps to factorize objects with the same
properties, it also contributes to the definition of the subsumption relationship.
Instances of a class reperesent the individuals, and an individual may belong to
a single class (mono-instanciation) or to several classes (multi-instanciation).
Ontology modeling languages offer different forms of inheritance and instancia-
tion. For example OWL supports multiple inheritance and multi-instancitation
while PLIB supports single inheritance and mono-instanciation.

Reasoning. In ontology engineering, reasoning essentially concerns subsump-
tion (e.g. to link ontologies classes in case of integration), class membership
checking (e.g. for migration of instances from one ontology class to another
one) and classification (e.g. to build new class hierarchies according to some
criteria). Other logical aspects of reasoning concern the specific properties of
the underlying logic like symmetry, reflexivity, equivalence etc are useful for
knowledge inference. Different reasoning techniques and tools have been de-
veloped. One can cite [6, 23, 24, 36], running in central memory have been
defined. Like for the model checking tehnique, these approaches may face the
problems of memory saturation or space exploration. Other reasoning tech-
nique more commonly used by formal methods have also been set up to handle
proof of properties in ontologies. These approaches, which proved scalable, use

theorem provers like COQ with [4, 15] or Event-B [2] to infer ontologies prop-
erties.

e Exchange formats. All the ontology modeling languages offer exchange for-
mats based on the XML language. When expressed in this exchange format,
classes and their instances can be interpreted in the in different contexts of
use.

2.1.5 Ontologies in Engineering

Our work does not address semantic web applications. In our study of design models,
we have been involved in the engineering area. We focus on domain ontologies where
the whole knowledge on the domain is described in the provided ontology. Due to
the system engineering targeted application domain, we use ontologies conforming
to the PLIB ontology model [3, 22, 42, 29]. This ontology model advocates the
use of strong typing with a rich type system (similar to the one of a programming
language more specific types like units), property derivation with algebraic operators
corresponding to the defined types, first order logic and set theory as a constraint
language, CWA and context dependent properties.

Like in usual engineering practices and unlike OWL, additional models may be
added to a technical object description. Indeed, a set of different functional models,
each one representing a particular discipline-specific representation (e.g., safety, real
time, energy consumption, geometry procurement, simulation, etc.) can be ssociated
to a given technical object described within the PLIB ontology model.

Finally, a number of domain ontologies based on this model already exist. Ex-
amples are the ISO 13584 and ISO 15926 (e.g. mechanical fasteners, measure in-
struments, cutting tools) and IEC 61360 (e.g. electronic components, process in-
struments) series of ontologies developed within international standardization or-
ganizations (e.g. ISO, IEC) or national ones (e.g. JEMIMA? CNIS*) that cover
progressively all the technical domain.

2.1.6 Ontologies and Annotations

One of the main usage of ontologies is annotation. Let us consider a set of entities
available in a given copus. These entities may be words or sentences in a document,
images or videos, entities of a design model, etc. By annotation, we denote the
link that may exist between an ontology concept (class, instance, property, etc.)
and an entity of the considered corpus. The annotation process consists in defining
and running a set of rules leading to the production of annotations. This process
may be completely automated, semi-automatic with user validation or completely
interactive. Automatic annotation proved powerful in the area of the semantic web
and natural language processing where the entities of the corpus are words appearing
in texts. Several tools (or annotators) have been developed for various ontologies

3Japan Electric Measuring Instruments Manufacturers Association,
4Chinese Institute for Standardization

and different natural languages [7, 14, 17, 25, 26]. Other approaches to annotate
images and multi-media documents have also been developed [11].

In the area of system design, the objective of model annotation is to increase
model interoperability. Consensual domain ontologies are shared by different sys-
tem models corresponding to different engineering views. Annotations allow the
designer to link different entities of different system models to ontology concepts.
Reasoning at the ontology level makes it possible to check some domain properties.
Model annotations have been produced using semi-automatic and/or interactive ap-
proaches. Automatic annotation is not recommended in such application domains.
For example, model annotations have been produced for product life management
(PLM) models in [34], for petroleum engineering models in [35, 5] or for aircraft
system modeling in [46]. All these examples used a controlled annotation techniques
being either semi-automatic or interactive.

2.1.7 Ontologies and Formal Models

The previous sections presented an overview of the fundamental characteristics of
ontologies and ontology modeling languages. We have shown that different ontology
languages can be set up to describe domain ontologies. Application domains, seman-
tics, constraints expressiveness, reasoning capabilities, assumption on the universe
of discourse etc. are some of the characteristics to be assessed before designing a
domain ontology.

Moreover, when an ontology modeling language (with its own o and ko) and
a design modeling language (with its own |=j; and k) are used concurrently, there
is a need of semantic alignment due to different semantics of these two languages.
This topic is outside the scope of this paper.

In the remainder of the paper, we consider that domain ontologies are described
within set theory and first order logic. We show that such domain ontologies are
useful to strengthen formal system development and verification in the engineering
domain. More precisely, we study two illustrative case of formal modeling: model
checking techniques and a proof and refinement based technique with Event-B. Both
of these two modeling languages are expressed with set theory and first order logic
as well. Thus, the semantic mismatch no longer present in our case. We will use
= and F to denote the satisfaction and entailment relationships for ontology and
design models modeling languages.

Chapter 3

Annotations to bridge ontologies
and system design

3.1 What if the ontology and the design model
were linked 7

Usually, design models do not handle, in an explicit manner, the knowledge of the
application domain or context where models are designed. Therefore, some useful
properties available in the domain knowledge are not considered by the design mod-
els, more, these properties could be violated by the design model. For instance, the
nose gear velocity system measures the velocity on the ground of an aircraft. To do
so, it uses a 16-bit register variable to store the number of cycles of the wheels (to
compute the distance travelled and the aircraft speed). Thereofore, it is important
to know the maximal length of the runway on earth in order to check that the cho-
sen size of the register variable (16-bit) is correct. In terms of system engineering,
the determined size of this register comes from flight mechanics, more precisely from
the lift of the aircraft. Without an explicit definition of this knowledge, engineers
would not be able to set up such a value for the register size.

So, linking knowledge domains, expressed by ontologies, with the design models
strengthens the designed models and support more verifications, since the properties
expressed in the ontologies will be part of the designed models. Moreover, thanks to
the capability to reference domain entities, it becomes possible to avoid ambiguous
definitions of the same entity in two different models.

Model annotation is the mechanism classically set up to link domain ontologies
with design models. It consists in defining specific relationships to relate ontology
concepts with models entities. The annotation mechanism extends the one that has
been defined by the semantic web community to annotate web pages [7, 14, 17, 25, 26]
or images [11].

3.2 Modeling languages

Different modeling languages may be used for building both ontologies, design mod-
els and annotation models. These languages may have the same semantics and

10

verification procedure, but these may be different. Two situations occur. First, as
mentioned in section 2.1.7, the semantics and the verification procedure can be ex-
pressed in a single modeling language. In this case, there is no semantic mismatch
and both design models, ontologies and annotation can be formalized in the same
modeling language. The second option considers different semantics of both mod-
eling languages. This case is out of the scope of this paper, it requires semantic
alignment. Several approaches to align semantics have proposed in the literature,
they are based on the definition of institutions as models [20, 12, 12, 33].

3.2.1 Our approach

Our approach advocates the exploitation of domain knowledge, carried out by on-
tologies, in design models. We propose a stepwise methodology, composed of four
steps, to establish a formal link between these two models. The approach is based on
the definition of an annotation mechanism that represents this link. The definition
of this mechanism depends on the used modeling languages for both ontologies and
design models. Fig. 3.1 shows the overall schema of the approach.

o]

enriched model

Figure 3.1: A four steps methodology for integrating domain knowledge and design
models.

1. Formalization of Domain Knowledge. Domain information are for-
malized in an ontology modeling language. Concepts, entities, relationships,
constraints, rules, etc. are explicitly defined. The result is a formal ontology
expressed in the chosen ontology modeling language. The semantics of this
language and the associated verification techniques are used to establish prop-
erties of the ontology. The expressive power of this language has an impact
on the defined ontologies (e.g. different constraint description languages may
be used). Finally, the ontology shall be defined independently of any context

11

of use. It may also be built from already existing ontologies (e.g. standard
ontologies).

2. Definition of design models. Any formal modeling language is used to de-
scribe design models. Within this formal modeling language, users define and
formalize specific design models corresponding to a given specification. Differ-
ent analyses allowed by the modeling language and its associated verification
technique may be performed on the designed model.

3. Annotation of design model by references to ontologies. Using spe-
cific mechanisms available in the formal modeling language, annotation of
design models are explicitly described. Annotation consists of defining specific
relationships between between design models entities and ontology concepts.
Different relationships are available, they have their specific properties. For
example, the Is_a relationship can be used to assert that a given design model
entity is an ontology concept (annotation by subsumption). Annotation is
made explicit in the design models thanks to the use of these relationships.

4. Expression and verification of properties. Once design models are anno-
tated by domain ontologies, the proof context of the design models is enriched
by the domain properties expressed in the ontology. It becomes possible to
check on the one side the consistence of the design models already established
before annotation (they may be no longer correct after annotation) and on the
other hand other properties that emerged after annotation.

At the end of this process, a new design model enriched with new information
of the domain knowledge is obtained. This model makes an explicit representa-
tion of domain concepts and properties borrowed from the ontology thanks to the
annotation.

3.2.2 Some Comments

1. It is important that the specified and used ontologies are defined in a consen-
sual manner by the stakeholders involved in the system under design. More-
over, they should have relationships with the domain of the design model.

2. Steps 1 and 2 of the previous methodology are independent. They may be run
in parallel. Ontologies may be defined prior to the design model or they may
preexist.

3. In the semantic web area, lot of efforts are devoted to the definition of au-
tomatic annotation mechanisms [7, 14, 17, 25, 26, 11]. There the annotated
models are documents in general and ontologies usually exploit terms rather
than concepts. The definition of the annotations may be realized either by
manual, semi-automatic or automatic processes[34, 35, 5, 46, 2|. In this pa-
per, we are concerned with formal design models targeting system design.
Therefore, our approach relies on an interactive annotation performed by the
designer.

12

3.2.3 Associated theory

Following the previously defined stepwise methodology to make explicit domain
knowledge expressed by ontologies in design models, we propose a general formal
setting in which such a methodology can be deployed for specific formal methods.

1. Formalization of Domain Knowledge. An ontology is described with

an ontology modeling language. It defines axioms Ap,,..., Ao, and proof
deduction rules rules from which properties i.e. theorems Ty, ,...,Tp, may be
deduced.

e Ontologies shall be sound (healthiness of the ontology). This means that
there exists a model My that satisfies the axioms of the ontology. We
write Mo = Ap, for 0 <i<m

e Fach theorem can be deduced from the axioms and the other theorems.
We write Aol, e ,Aom H T01 and AO1> R 7A0m>T017 .. -TO,',1 F TOi for
all2<i<n

2. Definition of design models. The studied systems are described in the
chosen modeling language. If the modeling language supports properties ver-
ification, then properties may be expressed and checked. Axioms Aq,... A
and theorems T, ...T; describing the model properties are defined.

e Described system models shall be sound (healthiness of the design model).
This means that there exists a model Mp that satisfies the axioms defined
for the system model. We write Mp = A; for 0 <i <k

e Each theorem expressing properties on the design model can be deduced
from the axioms and the other demonstrated theorems. We write Ay, ..., Ax F
Ty and Aq, ..., A, T1,... . T FT;forall 2 <i <1

3. Annotation of design model by references to ontologies. Annotation
consists in integrating domain knowledge expressed by ontologies in the design
model.

e Integrated axioms define a sound annotation (healthiness of the annotated
model). There exists a model satisfying the axioms of both the ontology
and the design model. We write M = A; A Aoj for 0 < 4 < k and
0<j<m

4. Expression and verification of properties. The properties 77, ..., T} shall
be re-proved again once the model has been enriched by ontologies. Moreover,
new emerging properties Py, ..., P, may be inferred from the annotated model.

e The properties of the design model before annotation need to be re-proved
again. Indeed, the ontology may have brought relevant information that
falsify 0 or more properties. We write Ay, ..., Ak, Ao,, ..., Ao, F 11 and
Al,...,Ak,Aol,...,Aom,Tol,...TOn,Tl,...E_l F T’z for all 2 S 1 S l

13

e When domain knowledge described by ontologies is embedded in the de-
sign models, new properties Py, ... P, may arise. They should be proved.
We write: Ay,..., An, Aoy, ..., Ao, ,F P forall 0 <i <t

Remark. As mentioned in section 2.1.7, we have assumed that the same deduc-
tion logic (with F and =) is associated to both the ontology and the design models.
If this is not the case, alignment of the semantics of the ontologies and of the models
should be performed. This is out of the scope of this paper.

3.3 An illustrating example

To demonstrate how our approach works, we have chosen to use a simple illustrative
example. This example is related to the management of students diplomas. Below,
we show the set up design model and the used ontology. They will be reused, later
in this report, at each step of the proposed approach.

Remark. We have chosen to use the UML class diagrams to describe the
different models used in this report. However, this choice is not restrictive and the
proposed method can be set up for any modeling language. Particularly, in the case
of the IMPEX project, we target the use of the Event-B method.

3.3.1 Design model for students registration

In this example, we consider an information system describing a set of students. The
information system considers students registered for different diplomas like Bachelor,
Engineer, Master, PhD, Licence, etc. FEach student is characterized by the last
hold diploma and the prepared diploma (next diploma). Moreover, this information
system is constrained by the fact that a student cannot register for a PhD if he/she
does not hold a master degree.

H studentMode
|
1

0.* students
| Bstudent |
= name : EString X B LastDiplom
= studentNumber: Elnt lastDiplom "= spaciality : Estring
= school : EString 1 | =@ year EInt

1 nextDiplom
H NextDiplom

o speciality : ESkring
1

Figure 3.2: The Students design model

Figure 3.2 depicts a UML class diagram describing a part of the information
system related to the management of students. In this model, a student holds
a diploma (degree) represented by the last graduation diploma he obtained. A
student, represented by the Student class with the attributes name, studentNumber
and school, representing his name, his student number and the school where he/she

14

studies. The LastDiplom class describes the last diploma hold by a student, with
speciality and year attributes for the chosen speciality and a year of graduation. Last,
the NextDiplom class describes the next diploma a student is willing to prepare.

Moreover, a constraint named phdInscritpion on the NextDiplom class is defined.
It represents a model invariant associated to this design model. It asserts that a
student registering for a PhD diploma needs to hold a master diploma to be allowed
to register for a PhD.

class NextDiplom
{
attribute speciality : String[7];
invariant phdInscritpion:
if self.speciality.equalsIgnoreCase(’phd’) then
self.oclContainer() .oclAsType(Student) .
lastDiplom.speciality.
equalsIgnoreCase(’master’)
else
true
endif;

}

This design model prescribes the following.

1. It considers attributes represented by the datatype String. Such a typing can
be considered as a weakness of the model. Errors due to misspelling of the
values of the attributes can lead to errors. A Diploma class describing classes
would have improved this model.

2. It considers that each student of the model already holds a diploma and is
willing to prepare another one.

3. Finally, it defines a specific constraint requiring that each student willing to
register for a PhD needs to hold a master (phdInscritpion constraint).

3.3.2 An ontology of diplomas

Diplomas and their characteristics represent a central knowledge for the previously
defined model. A knowledge model to describe the diploma knowledge through
diplomas characteristics, rules and constraints can be defined. Several candidate
ontologies are possible. Below, we show two examples of such ontologies.

Figure 3.3 shows part of the Diploma ontology representing existing diplomas.
This ontology represent different types of knowledge.

e Structural. It uses the subsumption relationship (here represented by the is_a
relationship) to define two categories of diplomas. LMDDiplom and Classi-
calDiplom describing respectively the Licence, Master and PhD diplomas and
the other diplomas like an Engineer diploma.

15

H DiplomOntology]
1

0.+ | diploms
H Diplom

= title : EString
= degree : Elnt
B LMDDiplom E ClassicalDiplom)
= NbCredit
£\
[_Erho B Licence [Emaster |
I

Figure 3.3: The Diplomas ontology

e Descriptive. Several descriptive attributes, like title, degree in the Diplom class
describing the name and the level of a given diploma and NbCredit describing
the credit number required for each diploma, are defined.

e Behavioral. A nonstructural constraint on the model says that the class Master
is equivalent to the class Engineer. It is written in the ontology modeling
language as

Equivalent_Class (Master, Engineer).

In UML, this constraint is represented by equivalent class linking the Master
and FEngineer classes of the same ontology.

Another possible ontology is depicted on figure 3.4. This ontology describes ex-
plicitely that the class PhD is associated to the Master class through the required
association. Note that the semantics of this association describes that to hold a
PhD, it is needed to hold a master degree. This constraint cannot be verified at this
level. It is given to describe this constraint.

H Diplomontolog
— ———
I
0.+ | diploms
H piplom
= title : EString
= degree : EInt
E LMDDiplom H ClassicalDiplom)|
| I
A A
|

required

Figure 3.4: The Diplomas ontology: second version

3.3.3 Link of ontology and design model

The constraint stating that, to register for a PhD, a student must hold a master
degree, on the design model is too restrictive. Indeed, when processing the design

16

model, there is no way to register an Engineer for preparing a PhD, since there is
no information, in the design model, stating that an Engineer diploma is equivalent
to a Master diploma.

This information can be obtained from the ontology. If the design model was
able to exploit the properties expressed by the ontology, the design model would
accept Engineers to register for a PhD.

3.3.4 Modeling languages

Different modeling languages may be used for building both ontologies, design mod-
els and annotation models, leading to heterogeneous models. In order to integrate
both models in a single setting, two solutions are possible. The first one consists in
using a single modeling language where all the models are described. The second one
consists in using a single modeling language supporting meta-modeling capabilities.
Then, each modeling language is described as a specific meta-model.

In this work, the developed approach uses the second option. Model Driven
Engineering techniques are set up. Meta-models of each manipulated models are
defined in order to define an annotation model in an uniform setting, and to ease
the prototyping.

3.4 Model annotation: three cases

In step 3, relations, defining model annotations, are established between the de-
sign model entities and the ontology concepts. Three annotation mechanisms are
identified. Annotations map design model entities (classes, properties, datatypes,
associations, etc.) and ontology concepts (classes, properties, associations, etc.).

3.4.1 Annotation by inheritance using the Is_a relationship

The Is_a relationship, defines a subsumption relationship [30]. In this case, a
concept of the ontology subsumes an entity of the design model. The mapping
relationship is a subsumption (is_a) relationship. All the properties, attributes,
rules and constraints that apply to the ontological concept become applicable for
the design model entity.

The annotation by inheritance maintains the ontological reasoning and preserves
it in the business model. But, note that due to the inheritance of all the resources
issued from the ontological concept, all these resources are expressible at model level
but some of them may not be valuable after annotation. This relationship is usually
defined in an a priori setting where the design models assume the availability and
existence of ontologies.

Figure 3.5 shows how the LastDiplom class of the students design model is
annotated by the FEngineer class of the Diplomas ontology.

17

H Engineer [&
(from DiplomOntolegy)

E LastDiplom [
(from StudentModel)
= spediality : EString
o= year:EInt

Figure 3.5: Annotation by inheritance using the Is_a relationship.

3.4.2 Annotation by partial inheritance using the Case_of
relationship

The Is_case_of relationship is also a subsumption relationship. It defines a partial
inheritance relationship [30]. This relation behaves like the Is_a relationship, except
that it does not require that all the properties and constraints to be inherited.
Indeed, only some of the properties and of the constraints of the ontology class are
imported. The annotation mechanism is in charge of selecting which properties and
constraints are imported.

Some of the domain restrictions (constraints) formalized in the ontological classes
participating to the annotation may not be expressible in the model if the properties
they are related to are not valuable in the model.

The main advantage of this approach is flexibility, it can be set up a posteriori.

H Engineer [#
(From DiplomOntology,

Properties:
degree:EInt ’ .
2 <Partialinheritance>
Expressions :
degree =year-2

E LastDiplom [
{from StudentModel)
o speciality : EString
o year : EInt

Figure 3.6: Annotation by partial inheritance using the Is_case_of relationship.

Figure 3.6 shows how the LastDiplom class of the students design model is
annotated by the Engineer class of the Diplomas ontology using partial inheritance.
Here the property degree of the Engineer class of the ontology is mapped with the
year property of the LastDiplom class of the design model using an algebraic relation
stating that degree = year — 2.

3.4.3 Annotation by association

1s_a and Is_case_of relationships are built-in relationships usually available in the
ontology modeling languages. It may happen that some annotations use specific re-
lationships defined by the users. These relationships are themselves characterized by

18

ontologies. The process enables the connection between the ontological classes and
model classes by association and eventual specification of the properties relations.

In this case, the ontological reasoning contained in the knowledge model can not
be preserved at the annotated design model. The properties of the annotation shall
be borrowed from the ontology which defines this annotation relationship.

E Engineer @
(Ffrom DiplomOntology

annotatingClass
PropertyAnnotation:
speciality ==> title

annotatedClass

H LastDiplom [#]
(from StudentModel)
o speciality : EString
o year: EInt

Figure 3.7: Annotation by association

Figure 3.7 shows how the LastDiplom class of the students design model is
annotated by the Engineer class of the Diplomas ontology. Here, the property title
of the Engineer class of the ontology is mapped with the speciality property of the
LastDiplom class of the design model using an equivalence relation.

3.4.4 Annotation of the case study

Figure 3.8 illustrates the three identified possible annotations of design models.

] E Engineer IE|_ H Engineer [#
H Engineer @ {from DiplomOntology) (from DiplemOntology
(from DiplomOntology]
Properties: annotatingClass
Cgrectit <Partialinheritance> ;::Ei:i?;:‘:n:;attllem:
Expressions :
degree = year -2 annotatedClass
LastDipl 7
E LastDiplom rrrE q—afd_\;[:-;_?:]d_\:? . E| LastDlpllom E‘
(From StudentModel) — 0 ty -ESt-rin-g {Ffrom StudentModel)
o= " o spediality : = lity : ESkrin
o= spediality : EString K speciality g
= year:Elnt Elyear:IEInG = year:Eint
(a) Annotation (b) Annotation by partial in- (c) Annotation by associa-
by inheri- heritance tion

tance

Figure 3.8: Annotations mechanisms

The annotation process may be manual, semi-automatic or an automatic one. In
the case of the association based annotation, an ontology of annotation relations is
required. Moreover, the associated reasoning shall be specified and carried by the
definition of these relations.

19

3.4.5 Annotation meta-models

As mentioned above, the annotation mechanisms shall be described in the modeling
language. We recall that we have chosen the UML class diagrams as a modeling
language. A consequence of this choice, is the use of the Is_a relationship. It is
a built-in relationship and does not need to be re-defined. The Is_Case_of and
Association annotation relations need to be defined within the modeling language
(here UML). Two meta-models (one for each type of annotation) describing these
mechanisms are defined. They link design model entities and ontology concepts at
the meta-model level.

The meta-model for annotation by Is_Case_of

Figure 3.9 shows the defined meta-model for describing the Case_of based annota-
tion.
H AnnotationMode!

= namg : EString

. | partialinhiritances

0
H CaseOf extendedClass

1
o+ PropertyAnnotations

[PropertyMapping
= name : EString
-

£l OntologyClass superClassas H ModelClass
1

) +| properties

0.* |H ModelPrope
annotatedProperty |

constraints [0.* 0..*| properties

H Onm\ogyConsuamli E OntologyPrope

[| [| annotatingProperty|

expression

H Expression
= type : ExpressionType <enumeration>>
= yalue . EString ' ExpressionType

= constraint
- algebric
— discret

Figure 3.9: Annotation by Case_of meta-model

- AnnotationModel represents the entry point of the annotation models.

- The CaseOf concept represents the Is_Case_of relations that may exist between
design model entities and ontology classes.

- PropertyMapping class models the relations between design model properties
and ontology properties.

- ModelClass references the Class entity of a design model.
- OntologyClass references the Class concept of an ontology.

- FExpression class represents the type of the relation that may exist between on-
tology and design model properties. They may be of different types: algebraic
(e.g. X =Y+D), discrete (e.g. equivalence between clothes sizes like S <=-36
, M<=-38 and L<=-40) or constraint (e.g. X+Y > Z). This meta-model
does not give the whole expression language. This language can be given by a
classical class diagram describing expressions.

20

The meta-model for annotation by Association

Figure 3.10 shows the proposed meta-model for describing the Association based
annotation.

H AnnotationModel

= name : EStrin,
|

annotations
[E OntologyClass

0.
AnnotatingClass H AnnotationClas annotatedClass[H ModelClass
|
= name : EStrin: 1
constraints [0, 0..*| properties o propertyAnnotations 0. properties
}Q OntologyConsiraini [[J OntologyProperty H PropertyMapping 1.+ [T ModelPraps

I N s
| annotatingProperty| = name EStrin annotatedProperty

, expression

H Expression
= type : ExpressionType enumeration:
= valug : EString ¥ ExpressionType
= constraint
- algebric
= discrat

Figure 3.10: Annotation by Association meta-model

- AnnotationModel represents the entry point of the annotation models.

- ClassAnnotation represents an association relation between ontology concepts
and design model classes (class A is associated to class B).

- PropertyMapping represents the relations between design model properties and
ontology properties.

- Fxpression, similarly to the Is_case_of annotation, makes reference to the type
of correspondence between the properties (algebraic, discrete or constraint).

3.5 Properties expression and verification

The last step of the approach analyzes the obtained annotated design models through
formally established links with the ontology. This annotation process leads to the
enrichment of the original design model with new relations, properties, constraints
and rules. Ontological properties and classes are considered to be available in the
enriched model if they have been selected or linked to model properties during the
annotation process (third step the approach). It may happen that these relations,
properties and constraints could not be expressed at the design model level and thus
not evaluable at instantiation level due to the absence of attributes to express them
and of the values of these attributes (instances). These constraints become meaning-
less. At this level, an analysis of the obtained relations, properties, constraints and
rules issued from the annotation is necessary after an annotation by Is_Case_Of or
by association because these two types of annotation offer the possibility of having
only certain ontological properties in the enriched design model. The annotation by
is_a does not suffer from this drawback since all ontological constraints in the design
model can be expressed (all the properties of the annotating ontological classes are
inherited in the design model).

21

Chapter 4

Conclusion and future work

4.1 Conclusion

This report gives an overview of domain knowledge modeling within ontologies. We
have shown that different ontology models are available. A set of characteristics has
been made explicit, they allow users to make a clear distinction between ontology
models. In a second part, we have presented a general setting defined to handle
explicitly domain knowledge in design models. The realized work aims at mak-
ing explicit and integrating domain knowledge in design models. In general, these
properties are not explicit when design models are developed. They are implicitly
handled by the engineers through a set of hypotheses. The objective of the defined
setting is to enrich these design models with domain knowledge in order to embed
new domain properties in these design models and verify these properties. A simple
example has been used to illustrate the defined approach.

The main interests of this approach can be summarized in the following points.

- Asynchronous evolution of both the ontology and the design models. Indeed,
ontologies and models may evolve independently.

- There is no modification of the annotations in case the ontologies evolve.

- The approach supports an incremental design process where annotations can
be added incrementally.

- The developed approach relies on semi-formal techniques based on the UML
modeling language and model driven engineering techniques.

- The defined ontology is a simple one. There is a need to define ontologies
corresponding to the avionic domain, by domain experts.

4.2 Ongoing work

The next step consists in defining formal models allowing to handle formal verifica-
tion techniques and make it possible to handle explicit domain knowledge in such

22

formal models. The interest of this work would be to evaluate if formal methods
can be handled by this approach in case design models are formally described.
Another important work consists in describing domain ontologies that stick to
different application domains. It is also important to formalize the domain informa-
tion contained formatting tables, glossaries, standards and informal descriptions.

23

Bibliography

1]

2]

[3]

A free, open-source ontology editor and framework for building intelligent sys-
tems, howpublished = http://protege.stanford.edu/.

Y. Ait-Ameur, J. P. Gibson, and D. Méry. On implicit and explicit semantics:
Integration issues in proof-based development of systems - version to read. In
Leveraging Applications of Formal Methods, Verification and Validation. Spe-
cialized Techniques and Applications - 6th International Symposium, ISoLA
2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings, Part II, vol-
ume 8803, pages 604-618. Springer Verlag, 2014.

Y. Ait-Ameur and H. Wiedmer. General resources. I1SO-IS 13584-20. ISO
Geneve, 88 pages, 1998.

P. Barlatier and R. Dapoigny. A type-theoretical approach for ontologies: The
case of roles. Applied Ontology, 7(3):311-356, 2012.

N. Belaid, S. Jean, Y. Ait-Ameur, and J. Rainaud. An ontology and indexation
based management of services and workflows application to geological modeling.
IJEBM, 9(4):296-309, 2011.

S. E. P. Bijan. Pellet: An owl dl reasoner. In International Workshop on
Description Logics (DL2004), pages 6-8, 2004.

K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham. Evolving GATE to
Meet New Challenges in Language Engineering. Natural Language Engineering,
10(3/4):349-373, 2004.

D. Brickley and R. V. Guha. RDF vocabulary description language 1.1: RDF
schema. W3C Recommendation 10, 25 February 2014. Available at http:
//www.w3.org/TR/rdf-schema/.

J. Broekstra and A. Kampman. SeRQL: An RDF query and transformation
language. In SWAD Europe Workshop on Semantic Web Storage and Retrieval,
2004.

J. Broekstra, A. Kampman, and F. v. Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In Proceedings of the First In-
ternational Semantic Web Conference on The Semantic Web, ISWC ’02, pages
54-68, London, UK, UK, 2002. Springer-Verlag.

24

[11]

[12]

[15]

[16]

[17]

[18]

A. Chebotko, Y. Deng, S. Lu, F. Fotouhi, and A. Aristar. An ontology-based
multimedia annotator for the semantic web of language engineering. Int. J.
Semantic Web Inf. Syst., 1(1):50-67, 2005.

M. Codescu, T. Mossakowski, and O. Kutz. A categorical approach to ontology
alignment. In P. Shvaiko, J. Euzenat, M. Mao, E. Jiménez-Ruiz, J. Li, and
A. Ngonga, editors, Proceedings of the 9th International Workshop on Ontol-
ogy Matching collocated with the 13th International Semantic Web Conference
(ISWC 2014), Riva del Garda, Trentino, Italy, October 20, 201/., volume 1317
of CEUR Workshop Proceedings, pages 1-12. CEUR-WS.org, 2014.

D. Connolly, I. Horrocks, D. McGuinness, F. Patel-Schneider, and A. Stein.
Daml+oil reference description. World Wide Web Consortium, 2001.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani, I. Roberts,
G. Gorrell, A. Funk, A. Roberts, D. Damljanovic, T. Heitz, M. A. Greenwood,
H. Saggion, J. Petrak, Y. Li, and W. Peters. Text Processing with GATE
(Version 6). 2011.

R. Dapoigny and P. Barlatier. Modeling ontological structures with type classes
in coq. In Conceptual Structures for STEM Research and Education, 20th In-
ternational Conference on Conceptual Structures, ICCS 2013, Mumbai, India,
January 10-12, 2013. Proceedings, volume 7735 of Lecture Notes in Computer
Science, pages 135-152. Springer, 2013.

H. Dehainsala, G. Pierra, and L. Bellatreche. Ontodb: An ontology-based
database for data intensive applications. In Proc. of the 12th Int. Conf. on
Database Systems for Advanced Applications (DASFAA’07). LNCS. Springer,
2007.

S. Despres and S. Szulman. Terminae method and integration process for le-
gal ontology building. In M. Ali and R. Dapoigny, editors, Advances in Applied
Artificial Intelligence, 19th International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems, IEA /AIE 2006, Annecy,
France, June 27-30, 2006, Proceedings, volume 4031 of Lecture Notes in Com-
puter Science, pages 1014-1023. Springer, 2006.

C. Fankam, Y. Ait-Ameur, and G. Pierra. Exploitation of ontology languages for
both persistence and reasoning purposes - mapping plib, OWL and flight ontol-
ogy models. In WEBIST 2007 - Proceedings of the Third International Confer-
ence on Web Information Systems and Technologies, Volume WIA, Barcelona,
Spain, March 3-6, 2007., pages 254-262. INSTICC Press, 2007.

A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server: a Tool for Col-
laborative Ontology Construction. International Journal of Human Computer

Studies (IJHCS), 46(6):707-727, 1997.

J. Goguen and R. Burstall. Introducing institutions. In E. Clarke and D. Kozen,
editors, Logics of Programs, volume 164 of Lecture Notes in Computer Science,
pages 221-256. Springer Berlin Heidelberg, 1984.

25

[21]

[22]
[23]

[24]

[25]

2]

[27]

28]

[29]

[30]

[31]

T. R. Gruber. Towards Principles for the Design of Ontologies Used for knowl-
edge sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation. Kluwer Academic Publisher’s, 1993.

P. Guy, A.-A. Yamine, and S. Eric. ISO (660p), GenAve, 2003.

V. Haarslev and R. Moller. Description of the RACER system and its applica-
tions. In Working Notes of the 2001 International Description Logics Workshop
(DL-2001), Stanford, CA, USA, August 1-3, 2001, volume 49 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2001.

V. Haarslev and R. Moller. RACER system description. In Automated Rea-
soning, First International Joint Conference, IJCAR 2001, Siena, Italy, June
18-23, 2001, Proceedings, volume 2083 of Lecture Notes in Computer Science,
pages 701-706. Springer, 2001.

S. Handschuh and S. Staab. CREAM: creating metadata for the semantic web.
Computer Networks, 42(5):579-598, 2003.

S. Handschuh, R. Volz, and S. Staab. Annotation for the deep web. IEEFE
Intelligent Systems, 18(5):42-48, 2003.

S. Harris and N. Gibbins. 3store: Efficient bulk RDF Storage. In Proceedings
of the 1st International Workshop on Practical and Scalable Semantic Systems
(PPP’03), pages 1-15, 2003.

P. Hitzler, M. Krotzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph,
editors. OWL 2 Web Ontology Language: Primer. W3C Recommendation, 27
October 2009. Available at http://www.w3.org/TR/owl2-primer/.

[SO13584-42. Industrial automation systems and integration parts library part
42 : Description methodology : Methodology for structuring parts families.
Technical report, International Standards Organization, 1998.

S. Jean. OntoQL, an exploitation language for ontology-based databases. Theses,
Université de Poitiers, Dec. 2007.

S. Jean, G. Pierra, and Y. Ait-Ameur. Domain Ontologies: A Database-
Oriented Analysis. In Web Information Systems and Technologies, Interna-
tional Conferences, WEBIST 2005 and WEBIST 2006. Revised Selected Pa-
pers, Lecture Notes in Business Information Processing, pages 238-254. Springer
Berlin Heidelberg, 2007.

H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The protA@gA®©
owl plugin: An open development environment for semantic web applications.
pages 229-243. Springer, 2004.

C. Lange, O. Kutz, T. Mossakowski, and M. Griininger. The distributed ontol-
ogy language (DOL): ontology integration and interoperability applied to math-
ematical formalization. In J. Jeuring, J. A. Campbell, J. Carette, G. D. Reis,

26

[36]

[37]

[40]

P. Sojka, M. Wenzel, and V. Sorge, editors, Intelligent Computer Mathemat-
ics - 11th International Conference, AISC 2012, 19th Symposium, Calculemus
2012, 5th International Workshop, DML 2012, 11th International Conference,
MKM 2012, Systems and Projects, Held as Part of CICM 2012, Bremen, Ger-
many, July 8-13, 2012. Proceedings, volume 7362 of Lecture Notes in Computer
Science, pages 463-467. Springer, 2012.

Y. Lu, H. Panetto, Y. Ni, and X. Gu. Ontology alignment for networked
enterprise information system interoperability in supply chain environment. Int.
J. Computer Integrated Manufacturing, 26(1-2):140-151, 2013.

L. S. Mastella, Y. Ait-Ameur, S. Jean, M. Perrin, and J. Rainaud. Semantic
exploitation of engineering models: An application to oilfield models. In A. P.
Sexton, editor, Dataspace: The Final Frontier, 26th British National Confer-
ence on Databases, BNCOD 26, Birmingham, UK, July 7-9, 2009. Proceedings,
volume 5588 of Lecture Notes in Computer Science, pages 203-207. Springer,
2009.

B. Motik. KAON2 - scalable reasoning over ontologies with large data sets.
ERCIM News, 2008(72), 2008.

W. OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009. Available at http:
//www.w3.org/TR/owl2-overview/.

7. Pan and J. Heflin. Dldb: Extending relational databases to support semantic
web queries. In In PSSS, pages 109-113, 2003.

M. J. Park, J. H. Lee, C. H. Lee, J. Lin, O. Serres, and C. W. Chung. An efficient
and scalable management of ontology. In Proceedings of the 12th International
Conference on Database Systems for Advanced Applications (DASFAA’07), vol-
ume 4443 of Lecture Notes in Computer Science. Springer, 2007.

G. Pierra. Context-explication in conceptual ontologies: the plib approach.
In Proceedings of the 10th ISPE International Conference on Concurrent En-
gineering (CE 2003), Vol. Enhanced Interoperable Systems, volume 26, page
2003, 2003.

G. Pierra. Context representation in domain ontologies and its use for semantic
integration of data. Journal on Data Semantics, 10:174-211, 2008.

G. Pierra and E. Sardet. ISO 13584-32 a Industrial automation systems and in-
tegration a Parts library a Part 32: Implementation resources: OntoML: Prod-
uct ontology markup language. 1SO, 2010.

G. Pierra and H. Wiedmer. Industrial automation systems and integrationparts
librarypart 42: methodology for structuring part families. Technical report,
Technical Report ISO DIS 13584-42, International Organization for Standard-
ization, 30 May 1996. ISO/TC 184/SC4/WG2, 1996.

27

[44]

[45]

[46]

M. Stocker and M. Smith. Owlgres: A scalable owl reasoner. In The Sizth
International Workshop on OWL: Experiences and Directions, 2008.

J. Trinkunas and Q. Vasilecas. A graph oriented model for ontology transforma-
tion into conceptual data model. Information Technology and Control, 36(1A),
December 2007.

D. S. Zayas, A. Monceaux, and Y. Ait-Ameur. Knowledge models to reduce
the gap between heterogeneous models: Application to aircraft systems engi-
neering. In R. Calinescu, R. F. Paige, and M. Z. Kwiatkowska, editors, 15th
IEEFE International Conference on Engineering of Complex Computer Systems,
ICECCS 2010, Ozford, United Kingdom, 22-26 March 2010, pages 355—-360.
IEEE Computer Society, 2010.

28

	livrable1_t1
	T1.1_D1.1_Livrable_IRIT_IMPEX

